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1. Introduction

The possibility of constructing and solving by algebraic and/or analytical methods one-

dimensional interacting quantum spin chains, is one of the major achievements of quantum

integrable systems. It allows the determination of the spectrum, eigenvectors and (at

least partially) the calculation of correlation functions. The main tool is the quantum R-

matrix, obeying a cubic Yang-Baxter equation, the “coproduct” properties of which allow

the building of a periodic L-site transfer matrix with identical exchange relations and

the subsequent derivation of quantum commuting Hamiltonians [1]. A similar structure

arises for non-periodic (open) spin chains. These are characterised by a second object: the

reflection matrix K, obeying a quadratic consistency equation with the R matrix [2 – 6].

Using again “coproduct-like” properties of this structure one constructs suitable transfer

matrices yielding (local) commuting spin chain Hamiltonians by combining K and semi-

tensor products of R [3].

Recently, a more algebraic approach to the analytical Bethe ansatz has been devel-

opped, allowing a ‘universal’ approach (i.e; whatever the spins on the chain) to the spectrum

of the transfer matrix, and the corresponding Bethe equations. This framework has been

developped for open and closed spin chains, based on gl(N ) [7] and Uq(glN ) [8] algebras.

On an other hand, quantum supersymmetric integrable systems appeared [9] in the

context of N = 4 super-Yang-Mills (SYM) theories, in the loop expansion of the dilatation

operator, used for the computation of anomalous dimensions of trace operators. In fact,

it seems that (at least for the first loop corrections) that the dilatation operator can be

identified with some super-spin chain Hamiltonian, the type of the chain depending both

on the (sub)sector of the SYM theory one considers, and on the order of loop correction,

see e.g. [10].

Hence, it is the right time to give a general overview of the possible integrable closed and

open super-spin chains that one can construct starting from a gl(M|N ) superalgebra and

arbitrary spins on the chain. We will study the spectrum and Bethe equations associated

to these chains. Closed spin chains based on sl(M|N ) superalgebras in the distinguished

diagram were studied in [11] and [12] and, in the case of alternating fundamental-conjugate

representations of sl(M|N ) in [13]. In [14], closed spin chains in the fundamental repre-

sentation but for any type of Dynkin diagram where studied using the Baxter Q-operator,

and generalized in [15] to a chain where all the spins are in a (type 1) typical represen-

tation depending on a free parameter. General approach using Hirota equation was done

in [16]. Open spin chains based on sl(1|2) have been studied in details in e.g. [17, 18]. The

sl(M|N ) case with spins in the fundamental representation, with diagonal K(u) matri-

ces, but for any type of Dynkin diagrams have been done in [26]. The deformed case for

fundamental representations but general K(u) matrices have been studied in [19]. We will

use the algebro-analytical framework developped in [7, 8], applied to superalgebras. It will

provide a ‘universal’ presentation for all chains (whatever the representations that enter

the chain), for closed and open cases. A particularity of superalgebras (that do not share
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usual algebras) is the existence of different Dynkin diagrams for the same superalgebra.

This leads to different presentations of the spectrum of the same transfer matrix, hence to

different Bethe equations: the presentation is also universal in the sense that it applies for

all Dynkin diagramms of the superalgebra.

The plan of the paper is as follows. In section 2, we present the algebraic structures that

are needed for the construction of super-spin chains: the super-Yangian based on gl(M|N )

for closed chains and the reflection superalgebra for open chains. Then, in section 3, we

construct the closed spin chains, give their spectrum and their Bethe equations, in the case

of distinguished Dynkin diagram. Section 4 is devoted to the general form of the Bethe

equations for each of the different Dynkin diagramms of the superalgebra. The case of open

super-spin chain is treated in section 5, including the different presentations associated to

different Dynkin diagrams. Finally, section 6 illustrates our method on examples.

2. Algebraic structures

2.1 Graded spaces

We will work on Z2-graded spaces C
M|N , with Z2-grade

[ ] :

{
NM+N → {0, 1}

j 7→ [j]
(2.1)

where NM+N = {1, 2, . . . ,M + N}. The elementary C
M|N vectors ei and End(CM|N )

matrices Eij have grade

[ei] = [i] and [Eij ] = [i] + [j]. (2.2)

The tensor product is graded accordingly:

(Eij ⊗ Ekl)(Eab ⊗ Ecd) = (−1)([k]+[l])([a]+[b])(EijEab ⊗ EklEcd) . (2.3)

The permutation operator

P12 =

M+N∑

i,j=1

(−1)[j]Eij ⊗ Eji (2.4)

is also graded

P12(ei ⊗ ej) = (−1)[i][j] ej ⊗ ei and P12(Eij ⊗ Ekl)P12 = (−1)([i]+[j])([k]+[l]) Ekl ⊗ Eij .(2.5)

The permutation operator obey the relation P 2
12 = I ⊗ I, so that it is symmetric:

P21 = P12 P12 P12 = P12 (2.6)

Together with the Z2-grading, we will use a graded commutator [., .}, which is graded

antisymmetric and obeys a graded Jacobi identity.

Unless explicitly specified, we will work with the distinguished Z2-grade defined by

[i] =

{
0 , 1 ≤ i ≤ M ,

1 , M + 1 ≤ i ≤ M + N .
(2.7)

– 3 –
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However, in some cases, we will use different grading, such as the symmetric Z2-grade,

defined for N = 2n:

[i] =

{
0 , 1 ≤ i ≤ n and M + n + 1 ≤ i ≤ M + N ,

1 , n + 1 ≤ i ≤ M + n .
(2.8)

The name of these grading refers to the gl(M|N ) Dynkin diagram (and simple roots) they

are associated to, see below.

2.2 The gl(M|N ) superalgebra

The Lie superalgebra gl(M|N ) is a Z2-graded vector space over C spanned by the basis

{Eab|a, b = 1, 2, . . . ,M + N}. The gradation is defined by the Z2-grade [ ] through:

[Eab] = [a] + [b] . (2.9)

The bilinear graded commutator associated to gl(M|N ) is defined by:

[Eab, Ecd} = δcb Ead − (−1)([a]+[b])([c]+[d])δad Ecb . (2.10)

Gathering the generators Eab into a single matrix

E =
M+N∑

a,b=1

(−1)[a] Eab Eab (2.11)

the above commutation relations can be recasted as
[
E1 , E2

}
= P12

(
E2 − E1

)
(2.12)

where E1 = E ⊗ I and E2 = I ⊗ E.

Although the gl(M|N ) superalgebra is a graded version of the gl(M+N ) algebra, they

differ on several points, a common feature when comparing Lie algebras and superalgebras,

see e.g. [20] for more details. In particular, there exist several inequivalent simple roots

systems, leading to different presentations of the same superalgebra. One can relate these

different systems to a choice of the Z2-grade. To each inequivalent simple roots system

correspond a Dynkin diagram, so that a superalgebra possesses several Dynkin diagram.

Note however that any Dynkin diagram defines uniquely a superalgebra.

2.3 The super-Yangian Y(M|N )

Y(M|N ) is the graded unital associative algebra, with generators T
(n)
ab , n > 0, a, b =

1, . . . ,M + N , with Z2-grade

[T
(n)
ab ] = [a] + [b] , ∀ a, b, n . (2.13)

We gather Y(M|N ) generators in matrix form with T
(0)
ab = δab

T (u)
.
=

M+N∑

a,b=1

∑

n≥0

~
n

un
T

(n)
ab Eab

.
=

∑

n≥0

~
n

un
T (n) .

=
M+N∑

a,b

Tab(u)Eab , (2.14)
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which is an even element of Y(M|N )[u−1] ⊗ End(CM|N ). Here and below, the space

End(CM|N ) will be refered as the auxiliary space, while (the copies of) the super-Yangian

Y(M|N )[u−1] will be called the quantum space(s).

Y(M|N ) commutation relations are given by the so-called FRT exchange relation [21]

R12(u − v)T1(u)T2(v) = T2(v)T1(u)R12(u − v) , (2.15)

each side of the equation being an element of Y(M|N )[u−1]⊗End(CM|N )⊗End(CM|N ),

and where we have introduced the super-Yangian R-matrix1

R12(u) = u IM+N ⊗ IM+N − ~P12 . (2.16)

It acts on the two auxiliary spaces associated to T1(u) = T (u) ⊗ IM+N and T2(u) =

IM+N ⊗ T (u). The deformation parameter ~ is in fact irrelevant (provided it is not zero),

hence it is in general set to 1 for algebraic studies. However, in the context of spin chain

models, it is set to −i, so that we keep it free to encompass these two choices. Note that

the R-matrix is a globally even one. Its inverse reads

R−1
12 (x) =

1

x2 − ~2
(x I ⊗ I + ~ P12) =

−1

x2 − ~2
R12(−x) . (2.17)

Projecting the relation (2.15) on elementary matrices Eab ⊗ Ecd, one gets

[
Tab(u) , Tcd(v)

}
=

(−1)η(a,b,c)
~

u − v

(
Tcb(u)Tad(v) − Tcb(v)Tad(u)

)
, (2.18)

where η(a, b, c) = [a]([b] + [c]) + [b][c] and [· , ·} denotes the supercommutator.

Expanding the commutation relation in u−1 and v−1, we obtain

[
T

(m)
ab , T

(n)
cd

}
= (−1)η(a,b,c)

min(m,n)−1∑

p=0

(
T

(p)
cb T

(m+n−1−p)
ad − T

(m+n−1−p)
cb T

(p)
ad

)
, (2.19)

This commutation relation shows that the generators (−1)[a] T
(1)
ab span a gl(M|N ) sub-

superalgebra of the super-Yangian. Conversely, one can construct a morphism from the

Lie superalgebra to the super-Yangian, called the evaluation map:

ev :






gl(M|N ) → Y(M|N )

Tab(u) 7→ δab +
~

u
(−1)[a] Eba

T (u) 7→ I +
~

u
E

(2.20)

Using the commutation relations (2.12) of gl(M|N ), it is easy to show that ev(T (u)) obey

the relation (2.15).

Two subalgebras of Y(M|N ) will be used in the following: the Yangian

Y(M), generated by {Tab(u) , [a] = [b] = 0} and the Yangian Y−~(N ), generated by

1The normalization is chosen in such a way that R(u) is analytic in u.
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{Tab(u) , [a] = [b] = 1}. The generators of these subalgebras are obtained from T (u) us-

ing suitable End(CM|N ) projectors:

T (M)(u) = IM T (u) IM with IM =
∑

i,[i]=1

Eii ,

T
(N )
−~

(u) = IN T (u) IN with IN =
∑

i,[i]=0

Eii .

The map

∆ :






Y(M|N )[u−1] → Y(M|N )[u−1] ⊗ Y(M|N )[u−1]

Tij(u) 7→ ∆ (Tij(u)) =

M+N∑

k=1

Tik(u) ⊗ Tkj(u)
(2.21)

is an homomorphism of Y(M|N ). Gathering the generators into matrices, it rewrites

∆ (T (u)) = T (u)⊗̇T (u) ∈ Y(M|N )[u−1] ⊗ Y(M|N )[u−1] ⊗ End(CM|N ) . (2.22)

∆ is coassociative:

∆(n) = (∆(n−1) ⊗ id)∆ = (id ⊗ ∆(n−1))∆ . (2.23)

2.3.1 Highest weight vectors and modules

A Y(M|N ) module V is said to be highest weight if there exists v ∈ V such that

{
Taa(u) v = λa(u) v , λa(u) ∈ 1 + u−1

C[u−1] ∀ a = 1, . . . ,M + N

Tab(u) v = 0 , 1 ≤ b < a ≤ M + N
(2.24)

The vector λ(u)
.
= (λ1(u), . . . , λM+N (u)) is the highest weight of V , and v a highest weight

vector. The following theorems have been proved in [22]

Theorem 1. Any finite-dimensional irreducible representation of Y(M|N ) admits a

unique highest weight vector (up to normalization).

Theorem 2. An irreducible representation with highest weight λ(u) is finite-dimensional

if and only if

λa(u)

λa+1(u)
=

Pa(u + ~)

Pa(u)
, 1 ≤ a ≤ M + N and a 6= M ,

λM(u)

λM+1(u)
=

PM(u)

PM+N (u)
,

(2.25)

where all Pa(u) are monic polynomials.

Among the finite-dimensional highest weight representations, there is a class of

particular interest, constructed from the evaluation map: an evaluation representation

evπµ = πµ ◦ ev is a morphism from the super-Yangian Y (M|N ) to a highest weight irre-

ducible representation πµ of gl(M|N ). The morphism is given by:

evπµ(Tij(u)) = δij + (−1)[i] πµ(Eji)
~

u − a
∀i, j ∈ {1, . . . ,M + N} , a ∈ C , (2.26)

– 6 –
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where the dependance (that will be left implicit in what follows) of evπµ on an arbitrary

complex shift of the spectral parameter has been introduced. One has

evπµ(T
(1)
ij ) = (−1)[i] πµ(Eji) ; evπµ(T

(r)
ij ) = 0 for r > 1 . (2.27)

The highest weight µ(u) = (µ1(u), . . . , µM+N (u)) of the representation evπµ is given

by:

µi(u) = 1 + (−1)[i] µi
~

u − a
, ∀i ∈ {1, . . . ,M + N} (2.28)

where µ = (µ1, . . . , µM+N ) is the highest weight of πµ. The evaluation morphism associated

to the fundamental representation of gl(M|N ), with highest weight µf = (1, 0, . . . , 0),

provides the R matrix (2.16).

Theorem 3. [22] Any finite-dimensional irreducible representation of Y(M|N ) can be

obtained through the tensor products2 of such evaluation representations.

Let {evπi
}i=1,...,s be a set of evaluation representations. The tensor products of these s

representations ev~π = evπ1 ⊗ . . .⊗ evπs ◦ ∆(s) is a morphism from Y (M|N ) to the tensor

product of gl(M|N ) representations ~π = ⊗iπi given by:

ev~π(Tab(u)) =
∑

i1,...,is−1

evπ1(Tai1(u)) ⊗ evπ2(Ti1i2(u)) ⊗ · · · ⊗ evπs(Tis−1b(u)) (2.29)

2.3.2 The generators T ∗(u)

For the study of superspin chains, we will need also

T ∗(u) = T−1(u)t =

M+N∑

a,b=1

T ∗
ab(u)Eab (2.30)

where the graded transposition is defined as

At =
M+N∑

i,j=1

(−1)[i][j]+[j] Aji Eij =
M+N∑

i,j=1

(
At

)
ij

Eij , that is
(
At

)
ij

= (−1)[i][j]+[j] Aji .

(2.31)

These generators have been introduced by Nazarov [23], and it is easy to see that they

obey the same relations as T (u):

R12(u − v)T ∗
1 (u)T ∗

2 (v) = T ∗
2 (v)T ∗

1 (u)R12(u − v) . (2.32)

Thus, the map

ϕ : T (u) 7→ T ∗(u) i.e. ϕ [Tij(u)] = T ∗
ij(u) = (−1)[i][j]+[j]T−1

ji (u) (2.33)

2Note however that one has sometimes to make a quotient to get an irreducible representation from

these tensor products.
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is an algebra isomorphism. The exchange relation between T ∗(u) and T (v) reads

Rt1
12(v − u)T ∗

1 (u)T2(v) = T2(v)T ∗
1 (u)Rt1

12(v − u) , (2.34)

Rt2
12(v − u + ~(M−N ))T1(u)T ∗

2 (v) = T ∗
2 (v)T1(u)Rt2

12(v − u + ~(M−N )) , (2.35)

where the superscript t1 (resp. t2) denotes the transposition in the auxiliary space 1 (resp.

2). We have used the inversion formula

Rt2
12(x)−1 =

−1

x(x − ~)
Rt2

12(~(M−N ) − x) . (2.36)

One has also

[T ∗
nm(u) , Tkl(v)} =

~ (−1)[k][m]

u − v

(
δml(−1)[m]+[k][n]

M+N∑

a=1

(−1)[a][n]+[a]Tka(v)T ∗
na(u)

−δnk(−1)[n]
M+N∑

a=1

(−1)[a][m]T ∗
am(u)Tal(v)

)
. (2.37)

2.3.3 Liouville contraction and crossing symmetry

The starting point is the equality

Rt2
12(0) = ~ Q12 = ~ P t2

12 = ~

M+N∑

i,j=1

(−1)[j]+[i]+[i][j]Eij ⊗ Eij . (2.38)

When M 6= N , Q12 is (up to normalization) a one-dimensional projector Q2
12 = (M −

N )Q12 of End(C(M|N )). Remark that it is not symmetric:

Q21 = P12 Q12 P12 = P t1
12 =

M+N∑

i,j=1

(−1)[i][j]Eij ⊗ Eij 6= Q12 = P t2
12 . (2.39)

Then, from (2.35), one proves that there exist a central element Z(u) of Y(M|N ) such

that:

Q12 T1(u + ~(M−N ))T ∗
2 (u) = T ∗

2 (u)T1(u + ~(M−N ))Q12 = Z(u)Q12 . (2.40)

We refer to the original work [23] for more details.

Remark that this relation induces a crossing relation for the super-Yangian generators.

Indeed, starting from (2.40), one gets

Q12 T1(u + ~(M−N )) = Z(u)Q12 T ∗
2 (u)−1 (2.41)

which, upon transposition in space 2 and multiplication by P12, leads to

((
T−1(u)t

)−1
)t

=
1

Z(u)
T (u + ~(M−N )) , (2.42)

or analogously

T t(u)−1 =
1

Z(u − ~(M−N ))
T−1(u − ~(M−N ))t . (2.43)
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This relation is nothing but the crossing symmetry for the R-matrix, but extended at the

super-Yangian (abstract) level. It allows a crossing relation for the transfer matrix (see

below).

Note that this calculation is also valid for the ‘usual’ Yangian Y(N ). In particular, for the

Y(M) and Y−~(N ) subalgebras of Y(M|N ) one has

(
T

(N )
−~

(u)t
)−1

= z
(N )
−~

(u)
(
T

(N )
−~

(u + ~N )−1
)t

, (2.44)
(
T (M)(u)t

)−1
= z(M)(u)

(
T (M)(u − ~M)−1

)t
(2.45)

for some scalar functions z(M)(u) and z
(N )
−~

(u). They are related to the quantum determi-

nant of Y(M) (see e.g. [24]) through:

z(M)(u) =
qdet T (M)(u − ~)

qdet T (M)(u)
. (2.46)

We remind that the quantum determinent qdet T (u) is the central element of Y(M) given

by

qdet T (u) =
∑

σ∈SM

sgn(σ)Tσ(1)1(u) · · · Tσ(M)M(u − ~(M− 1)) (2.47)

=
∑

σ∈SM

sgn(σ)T1σ(1)(u − ~(M− 1)) · · · TMσ(M)(u) . (2.48)

Its value in the highest weight representation is computed through application of the above

formula on v+. For the Yangians Y(M) and Y−~(N ) in Y(M|N ), we get:

qdetT (M)(u) = λ1(u − ~(M− 1)) · · · λM(u) , (2.49)

qdetT
(N )
−~

(u) = λ
(N )
1 (u + ~(N − 1)) · · · λ

(N )
N (u) , (2.50)

where λ
(N )
j (u) = λM+j(u), j = 1, . . . ,N . It leads to the following expressions:

z(M)(u) =
λ1(u − ~M) · · · λM(u − ~)

λ1(u − ~(M− 1)) · · · λM(u)
, (2.51)

z
(N )
−~

(u) =
qdet T

(N )
−~

(u + ~)

qdet T
(N )
−~

(u)
=

λ
(N )
1 (u + ~N ) · · · λ

(N )
N (u + ~)

λ
(N )
1 (u + ~(N − 1)) · · · λ

(N )
N (u)

. (2.52)

The calculation of the function Z(u) needs the use of the quantum Berezinian, see sec-

tion 2.3.5.

2.3.4 Relations for T−1(u)

We will need the commutation relations for the inverse of T (u), defined by the relation

T (u)T−1(u) = I with T−1(u) =

M+N∑

a,b=1

T ′
ab(u)Eab , T ′

ab(u) = δab +
∑

n>0

(
~

u

)n

T
′(n)
ab .

(2.53)
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This relation is understood as a series in u−1, so that expanding the above equality, one

can reconstruct the generators T
′(n)
ab from the generators T

(n)
ab , according to

T
′(n)
ab = −T

(n)
ab −

M+N∑

c=1

n−1∑

p=1

T
′(n−p)
ac T

(p)
cb . (2.54)

From the relation (2.15), one deduces that

T2(v)R12(v − u)T−1
1 (u) = T−1

1 (u)R12(v − u)T2(v) , (2.55)

T−1
2 (v)R12(v − u)T1(u) = T1(u)R12(v − u)T−1

2 (v) , (2.56)

R12(v − u)T−1
1 (u)T−1

2 (v) = T−1
2 (v)T−1

1 (u)R12(v − u) , (2.57)

which upon projection on Emn ⊗ Ekl leads to

[
T ′

mn(u) , Tkl(v)
}

=
~ (−1)[k][n]

u − v

M+N∑

a=1

(
δml(−1)[k][m]+[m][n] Tka(v)T ′

an(u)−δnk T ′
ma(u)Tal(v)

)
.

Expanding in u−1 and v−1, one gets

[
T ′(p+1)

mn , T
(s)
kl

}
=(−1)[k][n]

p∑

r=0

M+N∑

a=1

(
δml(−1)[k][m]+[m][n]T

(s+r)
ka T ′(p−r)

an −δnkT
′(p−r)
ma T

(s+r)
al

)
.

(2.58)

Proposition 1. Let v+ be a highest weight vector of the super-Yangian. Then, v+ is also

a highest weight vector for T−1(u):

T
′(n)
kl v+ = 0 for k > l , 0 < n i.e. T ′

kl(u) v+ = 0 for k > l , (2.59)

T
′(n)
kk v+ = λ

′(n)
k v+ for 0 < n i.e. T ′

kk(u) v+ = λ′
k(u) v+ . (2.60)

Proof. We make a recursion on n. Applying (2.54) for n = 1 on v+, it is easy to see

that (2.59) and (2.60) are true for n = 1.

Suppose now that we have for a given s > 0 and some scalars λ
′(n)
k

T
′(n)
kl v+ = 0 for k > l , 0 < n < s

T
′(n)
kk v+ = λ

′(n)
k v+ for 0 < n < s , (2.61)

Applying (2.54) for n = s and k > l on v+, one gets

T
′(s)
kl v+ = −

l∑

c=1

s−1∑

p=1

T
′(s−p)
kc T

(p)
cl v+ = −

l∑

c=1

s−1∑

p=1

[
T
′(s−p)
kc , T

(p)
cl

}
v+ =

=

l∑

a=1

(−1)[a]
s−2∑

p=1

p

l∑

c=1

[
T
′(s−p−1)
kc , T

(p)
cl

}
v+ , (2.62)
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where to get the last equality, we have used (2.58). Iterating r times (with 2 ≤ r ≤ s − 1)

this calculation we are led to:

T
′(s)
kl v+ = Al,r

s−r−1∑

p=1

Bs,r,p

l∑

c=1

[
T
′(s−p−r)
kc , T

(p)
cl

}
v+ .

where Al,r and Bs,r,p are some resummation numbers. Taking r = s − 1 gives (2.59) for

n = s, which is thus proven for all n.

Finally, applying (2.54) for n = s and k = l on v+, we have:

T
′(s)
kk v+ = −λ

(s)
k v+ −

s−1∑

p=1

λ
′(s−p)
k λ

(p)
k v+ +

+
k−1∑

c=1

(−1)[c]
s−1∑

p=1

p
(
λ
′(s−p−1)
k λ

(p)
k − λ′(s−p−1)

c λ(p)
c

)
v+ +

+
k−1∑

c=1

(−1)[c]
s−2∑

p=1

p

(
k−1∑

a=1

[
T
′(s−p−1)
ka , T

(p)
ak

}
−

k−1∑

a=1

[
T (p)

ca , T ′(s−p−1)
ac

})
v+ .

Again, iterating as in eq. (2.62), we see that only scalar terms acting on v+ will survive in

the r.h.s. This proves the property.

It remains to determine the expression of the eigenvalues λ′
k(u). This is done in the

following proposition:

Proposition 2. Let λ′
k(u) be the eigenvalue of T−1

kk (u) on v+, k = 1, . . . ,M + N . We

have

λ′
k(u) =

{
λ1(u+~)···λk−1(u+~(k−1))

λ1(u)···λk(u+~(k−1)) , k = 1, . . . ,M ,

Z(u)
λk+1(u+~(2M−k))···λM+N (u+~(M−N+1))

λk(u+~(2M−k))···λM+N (u+~(M−N )) , k = M + 1, . . . ,M + N .

(2.63)

Proof. In order to find the first M diagonal entries of T−1(u), we start writing

∑

j≤k

Tij(u)T−1
jk (u) v+ = δik v+ ,

and taking i, k ≤ M we can write, in the distinguished grade,

∑

j≤k

(
T (M)(u)

)

ij
T−1

jk (u) v+ = δik v+ i, k ≤ M .

Considering this as an identity in Y(M|N )[u−1] ⊗ End(CM), we can act on the left with

(T (M)(u))−1, obtaining

T−1
kj (u) v+ =

(
T (M)(u)

)−1

kj
v+ , k, j = 1, . . . ,M . (2.64)
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Let us stress that in (2.64), T−1
kj (u) is the entry (k, j) of the inverse of the (M+N )×(M+N )

matrix T (u), while
(
T (M)(u)

)−1

kj
is the entry (k, j) of the inverse of the M × M matrix

T (M)(u). In particular, we get the relation

T−1
kk (u) v+ = λ

′(M)
k (u) v+ , k = 1, . . . ,M

where the λ
′(M)
k (u) are the eigenvalues on v+ of

(
T (M)(u)

)−1

kk
. It has been shown in [25, 7]

that these eigenvalues can be written as

λ
′(M)
k (u) =

λ
(M)
1 (u + ~) · · · λ

(M)
k−1 (u + ~(k − 1))

λ
(M)
1 (u) · · · λ

(M)
k (u + ~(k − 1))

, (2.65)

which leads to the first line of eq. (2.63).

For the last N diagonal entries of T−1(u) we start writing in block form the relation

T t(u)
(
T t(u)

)−1
v+ = v+, setting

T t(u) =




(
T (M)(u)

)t
F (u)

G(u)
(
T

(N )
−~

(u)
)t



 ,
(
T t(u)

)−1
v+ =

(
A(u) 0

∗ D(u)

)

v+ .

We then read from the lower right block

D(u) v+ =

((
T

(N )
−~

(u)
)t

)−1

v+ . (2.66)

The l.h.s. of this equation is computed via eq. (2.43) which implies, for k > M,

(D(u))k−M,k−M v+ =
(
T t(u)

)−1

kk
v+ =

1

Z(u − ~(M−N ))
T ′

kk(u − ~(M−N )) v+ .

The r.h.s. of the equation is computed via eq. (2.44). Comparing the left and right hand

sides leads to

λ′
k(u) = z

(N )
−~

(u + ~(M−N ))Z(u)λ
′(N )
k−M(u + ~M) k = M + 1, . . . ,M + N , (2.67)

where the λ
′(N )
k (u) are the eigenvalues on v+ of diagonal elements of the T

(N )
−~

(u) matrix.

Applying eq. (2.65) to the Y−~(N ) subalgebra, we can write these eigenvalues as

λ
′(N )
l (u) =

λ
(N )
1 (u − ~) · · ·λ

(N )
l−1 (u − ~(l − 1))

λ
(N )
1 (u) · · · λ

(N )
l (u − ~(l − 1))

, l = 1, . . . ,N .

Inserting the value (2.52) of z
(N )
−~

in eq. (2.67) we find the second line of eq. (2.63).

In a finite dimensional irreducible representation, where relations (2.25) hold, we can

rewrite eq. (2.63) in the following form:

λ′
k(u) =

{
1

λ1(u)

∏k−1
m=1

Pm(u+~(m+1))
Pm(u+~m) , k = 1, . . . ,M ,

Z(u)
λM+N (u+~(M−N ))

∏M+N−1
m=k

Pm(u+~(2M−m))
Pm(u+~(2M−m+1)) , k = M + 1, . . . ,M + N .
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2.3.5 Quantum Berezinian

The quantum Berezinian was defined by Nazarov [23]. It plays a similar role in the study of

the Yangian Y(M|N ) as the quantum determinant does in the case of the Yangian Y(N ).

Definition 1. The quantum Berezinian is the following power series with coefficients in

the Yangian Y(M|N ):

Ber(u) =
∑

σ∈SM

sgn(σ)Tσ(1)1(u + ~(M−N − 1)) · · · Tσ(M)M(u − ~N )

×
∑

τ∈SN

sgn(τ)T ∗
M+τ(1) ,M+1(u − ~N ) · · · T ∗

M+τ(N ) ,M+N (u − ~) . (2.68)

One can immediately recognize that

Ber(u) = qdetT (M)(u + ~(M−N − 1)) qdet T ∗(N )(u − ~N ) . (2.69)

Proposition 3. [23] The coefficients of the quantum Berezinian (2.68) are central in

Y(M|N ).

They are related to the Liouville contraction through the identity

Ber(u)Z(u) = Ber(u + ~) . (2.70)

The quantum Berezinian being central, one computes its value in the highest weight

module by applying expression (2.68) to the h.w. vector v+. We get

Ber(u) =

M∏

l=1

λl(u − ~N + ~(l − 1))

M+N∏

l=M+1

λ′
l(u − ~(M + N − l + 1)) , (2.71)

where the λ′
l(u), l = M + 1, . . . ,M + N are given in eq. (2.63). Substitution of this

expression in the identity (2.70) yields the following expression for Z(u):

Z(u) =
Ber(u + ~)

Ber(u)
=

M∏

k=1

λk(u + ~k)

λk(u + ~(k − 1))

M+N∏

l=M+1

λl(u + ~(2M− l))

λl(u + ~(2M− l + 1))
. (2.72)

Inserting now this expression into eq. (2.63), one obtains:

Corollary 1. The eigenvalues of the diagonal elements of T−1(u) on v+ are given by

λ′
k(u) =

∏k−1
m=1 λm(u + ~cm)

∏k
m=1 λm(u + ~cm−1)

, k = 1, . . . ,M + N . (2.73)

where we set cm =
∑m

l=1(−1)[l], m = 1, . . . ,M + N , and c0 = 0.

Using expressions (2.71) and (2.73), one gets the value of the quantum Berezinian:

Ber(u) =
M∏

k=1

λk(u + ~(k − 1))
M+N∏

l=M+1

1

λl(u + ~(2M− l))
. (2.74)
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In what follows, we will also use a different expression for Ber(u), proved also in [23]:

Ber−1(u) =
∑

σ∈SM

sgn(σ)T ∗
σ(1)1(u + ~(M− 1)) · · · T ∗

σ(M)M(u) × (2.75)

×
∑

τ∈SN

sgn(τ)TM+τ(1) ,M+1(u+~(M−N )) · · · TM+τ(N ) ,M+N (u+~(M−1)) .

Applying to both factors of expression (2.69) for the quantum Berezinian the known

identity (holding in Y~(N ))

qdet T (u)AN = TN (u − ~(N − 1)) · · · T1(u)AN , (2.76)

where AN is the normalized antisymmetrizer in the tensor space End(CN )⊗N , we can write

Ber(u)AMAN = T
(M)
M (u − ~N ) · ·T

(M)
1 (u + ~(M−N − 1))T

∗(N )
M+N (u + ~

′) ·

·T
∗(N )
M+1(u + ~

′N )AMAN ,

where we have set ~
′ = −~ in the second quantum determinant. The AM and AN antisym-

metrizers are both one-dimensional projectors respectively acting on the tensor product of

M and N copies of the auxiliary space, and can be written in terms of the R matrices

defining Y(M) and Y~′(N ):

AM=(R12 · · ·R1M) · · ·RM−1,M , Rij = R
(M)
ij (ui − uj) , ui − ui+1 = ~ ,

AN =
(
R′

M+1,M+2 · ·R
′
M+1,M+N

)
· ·R′

M+N−1,M+N , R′
ij =R

(N ),~′

ij (u′
i−u′

j) , u′
i−u′

i+1 =~
′ .

Writing now T (M)(u) = I
(M)T (u)I(M) and T ∗(N )(u) = I

(N )T ∗(u)I(N ), and setting ΠM|N =
(
I
M

)⊗M
⊗

(
I
N

)⊗N
, we get

Ber(u)AMAN = ΠM|NTM(u − ~N ) · · · T1(u + ~(M−N − 1)) ×

×T ∗
M+N (u − ~) · · · T ∗

M+1(u − ~N )AMAN .

The same steps applied to eq. (2.75) lead to the following equation.

Ber−1(u)AMAN = ΠM|NT ′
M(u + ~(M− 1)) · · · T ′

1(u) ×

×TM+N (u + ~(M− 1)) · · · TM+1(u + ~(M−N ))AMAN .

The above expressions can be considered as the graded counterparts of eq. (2.76): both

relations act on a number of copies of the auxiliary space equal to the dimension of the

Yangian and relate a (M + N )-fold tensor product of T matrices to a central element by

means of suitable one-dimensional projectors.

2.4 Reflection superalgebra

To study (soliton-preserving) open spin chains, we need to introduce another algebraic

structure, the reflection algebra. It is a subalgebra of the super-Yangian, and actually
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can be defined from any quantum group. Focusing on the super-Yangian, the reflection

superalgebra is a subalgebra of Y(M|N ), built as follows. One starts to consider

B(u) = T (u)K(u)T−1(−u) (2.77)

where T (u) generates the super-Yangian and K(u) is a matrix obeying the graded reflection

(boundary Yang-Baxter) equation

R12(u1 − u2) K1(u1) R21(u1 + u2) K2(u2) = K2(u2) R12(u1 + u2) K1(u1) R21(u1 − u2) .

(2.78)

Using the exchange relations (2.15), it is easy to deduce that B(u) also obeys the graded

reflection equation

R12(u1−u2) B1(u1) R21(u1+u2) B2(u2) = B2(u2) R12(u1+u2) B1(u1) R21(u1−u2) , (2.79)

or, in components:

[
Bij(u) , Bkl(v)

}
=

(−1)η(i,j,k)
~

u − v

(
Bkj(u)Bil(v) − Bkj(v)Bil(u)

)

+
~

u+v

(
(−1)[j]δjk

M+N∑

a=1

Bia(u)Bal(v)−(−1)η(i,j,k)δil

M+N∑

a=1

Bka(v)Baj(u)
)

−
~

2

u2 − v2
δij

(M+N∑

a=1

Bka(u)Bal(v) −
M+N∑

a=1

Bka(v)Bal(u)
)

. (2.80)

This relation shows that B(u) generates a subalgebra of the super-Yangian, called reflection

algebra and denoted B.

Using the coproduct (2.22), one then shows that

∆ (Bij(u)) =

M+N∑

l,m=1

(−1)([m]+[j])([m]+[l])Til(u)T ′
mj(−u) ⊗ Blm(u) . (2.81)

This proves that the reflection algebra is a Hopf coideal of Y(M|N ):

∆ (B) ⊆ Y(M|N ) ⊗ B .

This will allow us to define monodromy matrices for open spin chains (see section 5.1

below). In this context, the matrix K(u) will be related to the boundary condition of the

spin chain. Hence, the classification of K matrices is essential in the study of open spin

chains. As far as the super-Yangian is concerned, they have been classified in [26]. The

result is summarized in the following proposition

Proposition 4. Any invertible solution of the soliton preserving reflection equation (2.78)

takes the form K(u) = U
(
E + ξ

uI

)
U−1 where either

1. E is diagonal and E
2 = I (diagonalizable solutions)

2. E is strictly triangular and E
2 = 0 (non-diagonalizable solutions)
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The matrix U is an element of the group GL(M) × GL(N ), independent of the spectral

parameter; ξ is a free parameter, and the classification is done up to multiplication by a

function of the spectral parameter.

We will restrict to the case of diagonalizable solutions. The possible matrices E are then

labeled by two integers L1 and L2, 0 ≤ L1 ≤ L2 ≤ M+N , which count the number of −1

on the diagonal of E:

E = diag (−1, . . . ,−1︸ ︷︷ ︸
L1

, 1, . . . , 1︸ ︷︷ ︸
L2−L1

,−1, . . . ,−1︸ ︷︷ ︸
N+M−L2

) ≡ diag (θ1, . . . , θM+N ) .

Let us stress that the diagonalization matrix U being constant, it is sufficient to consider

diagonal K(u) matrices: the other cases are recovered by a conjugation T (u) → U−1 T (u)U

on each site of the chain, which does not affect the reflection algebra, nor the transfer

matrix [26]. The algebraic structure of B does depend on the choice for K(u). Indeed,

from the expansion

Bij(u) = θi δij +
1

u

(
(θi + θj)T

(1)
ij − ξ δij

)
+

1

u2
(. . .) . (2.82)

we deduce that, when L1 ≤ M ≤ L2, the Lie sub-superalgebra in B is gl(L1|M+N−L2)⊕

gl(M− L1|L2 −M). Hence, the notation B should also contain the labels N ,M, L1, L2:

we omit them for simplicity.

In the following, we will choose the normalisation of the resulting reflection matrix in

such a way that its entries are analytical:

K(u) = diag (ξ − u, . . . , ξ − u︸ ︷︷ ︸
L1 terms

, u + ξ, . . . , u + ξ︸ ︷︷ ︸
L2−L1terms

, ξ − u, . . . , ξ − u) . (2.83)

2.4.1 Highest weight representations of the reflection algebra

We construct highest weight representations of the reflection superalgebras based on those

of the super-Yangian. This construction will be used later on to build open spin chains.

However, a complete classification, similar to the one done in [25] for reflection algebras

(based on the Yangian Y(N )), remains to be done.

Proposition 5. The vector v+ is a highest weight vector for the representations of the

reflection algebra obtained from the representation (2.24) of Y(M|N ) with:

Bkl(u) v+ = 0 , 1 ≤ l < k ≤ M + N , (2.84)

Bkk(u) v+ =
2u

2u−~ck−1
gk(u)λk(u)λ′

k(−u) v+−
k−1∑

j=1

gj(u) aj(u) v+ , 1 ≤ k ≤ M+N , (2.85)

where ck =
∑k

a=1(−1)[a] and

gk(u) =






(ξ − u) , if 1 ≤ k ≤ L1

(ξ + u − ~cL1) , if L1 < k ≤ L2 ,

(ξ − u − ~(cL1 − cL2)) , if L2 < k ≤ M + N ,

(2.86)

ak(u) = (−1)[k]
~

2uλk(u)λ′
k(−u)

(2u − ~ck)(2u − ~ck−1)
. (2.87)
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Proof. We start writing, for k > l,

Bkl(u) v+ =

l∑

j=1

Tkj(u)Kjj(u)T ′
jl(−u) v+ =

l∑

j=1

Kjj(u)
[
Tkj(u) , T ′

jl(−u)
}

v+ . (2.88)

From the commutation relations, we find for a ≤ l < k

[
Tka(u) , T ′

al(−u)
}

v+ = (−1)[a] ~

2u

l∑

b=1

Tkb(u)T ′
bl(−u) v+ , (2.89)

Considering the case a = l, we see that the l.h.s. of (2.89) vanishes, so that

l∑

b=1

Tkb(u)T ′
bl(−u) v+ = 0 .

Hence the right hand side of eq. (2.88) also vanishes, proving (2.84).

We now turn to the case l = k, i.e. to the eigenvalues of Bkk(u) on v+. We start

defining

fa(u)
.
=

a∑

k=1

T ′
ak(−u)Tka(u) v+ and Ψi(u)

.
=

i∑

k=1

Tik(u)T ′
ki(−u) v+ .

The supercommutation relations applied to these definitions imply






fa(u) =
1

2u − ~ ca−1

(
2uλa(u)λ′

a(−u) v+ − ~

a−1∑

k=1

(−1)[k]Ψk(u)

)

Ψa(u) =
1

2u − ~ ca−1

(
2uλa(u)λ′

a(−u) v+ − ~

a−1∑

k=1

(−1)[k]fk(u)

)
,

(2.90)

for a = 1, . . . ,M + N . Since f1(u) = Ψ1(u) = λ1(u)λ′
1(−u) v+, the system (2.90) has a

unique solution fa(u) = Ψa(u), so we can rewrite the expression of fa(u) as

(
1 −

~

2u
ca−1

)
fa(u) = λa(u)λ′

a(−u) v+ −
~

2u

a−1∑

k=1

(−1)[k]fk(u) . (2.91)

Eq. (2.91) is a triangular linear system in the unknowns fa(u) whose unique solution can

be written as:

fj(u)=
λj(u)λ′

j(−u)

1− ~

2u cj−1

v+−

j−1∑

l=1

(−1)[l]~λl(u)λ′
l(−u)

2u(1− ~

2ucl)(1−
~

2ucl−1)
v+ =

λj(u)λ′
j(−u)

1 − ~

2u cj−1

v+ −

j−1∑

l=1

al(u) v+ .

(2.92)

Using this expression it is now clear that for j ≤ L1 we can write:

Bjj(u) v+ = (ξ − u)fj(u) =

(
2u(ξ − u)λj(u)λ′

j(−u)

2u − ~cj−1
− (ξ − u)

j−1∑

k=1

ak(u)

)
v+ .
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For L1 < j ≤ L2 we have

Bjj(u) v+ = (ξ + u)fj(u) − 2u

L1∑

k=1

Tjk(u)T ′
kj(−u) v+

= (ξ + u − ~cL1)fj(u) + ~

L1∑

k=1

(−1)[k]fk(u) , (2.93)

where to get the last equality we have used supercommutation relations on Tjk(u)T ′
kj(−u).

Using now eq. (2.92), we get

~

L1∑

k=1

(−1)[k]fk(u) = (2u − ~cL1)

L1∑

k=1

ak(u) v+ .

Substituting the above equation in eq. (2.93), we get the required result.

An analogous calculation for the j > L2 case leads to (2.86).

3. Closed super-spin chains

3.1 Monodromy and transfer matrices

One defines the (L sites) monodromy matrix T (u) as:

T (u) = ∆(L) (T (u)) = T (u) ⊗ T (u) ⊗ · · · ⊗ T (u) ∈ End(C(M|N )) ⊗ (Y(M|N ))⊗l . (3.1)

Applying an evaluation map on each term of this tensor product provides the ‘usual’

monodromy matrix: the different sites correspond to the terms in the tensor product,

and the evaluation map defines the ‘spin’ (the representation) carried by the site. Taking

different representations of the super-Yangian allows to construct various type of closed

super-spin chain models.

From the relation (2.15), it is easy to show that both the trace and the supertrace of

the monodromy matrix

t(u) = tra T (u) =
M+N∑

i=1

Tii(u) and st(u) = stra T (u) =
M+N∑

i=1

(−1)[i]Tii(u) (3.2)

generate commutative families of operators:

[t(u) , t(v)] = 0 and [st(u) , st(v)] = 0 . (3.3)

Note however that t(u) and st(u) do not commute one with each other. Hence, they will

generate different families of commuting observables.
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3.2 Global invariance of transfer matrices

Taking the supertrace on the auxiliary space 1 in relation (2.15), one is left with

[X , st(u)] = 0 , ∀ X ∈ gl(M|N ) . (3.4)

On the other hand, taking the trace in (2.15) leads to
[
T

(1)
kl , t(u)

]
=

(
(−1)[i] − (−1)[k]

)
Tkl(u) , (3.5)

which is obviously zero iff l and k are both even or odd indices:

[X , t(u)] = 0 , ∀ X ∈ gl(M) ⊕ gl(N ) . (3.6)

Then, the transfer matrix st(u) enjoys the full gl(M|N ) symmetry, while the transfer

matrix t(u) is only gl(M) ⊕ gl(N ) invariant.

It is thus reasonable to think that the models associated to st(u) are more relevant

than the ones associated to t(u) for the construction of super-spin chain models. We will

nevertheless present the Bethe anstaz for both transfer matrices. Note however that the

construction of open spin chain models is possible for the supertrace only, emphazising the

difference between t(u) and st(u).

3.3 Pseudovacuum for transfer matrices

Starting from a Y(M|N ) highest weight vector it is possible to construct an eigenvector

of the transfer matrix. If V1, . . . , VL are highest weight modules for Y(M|N ), with highest

weight vectors v1, . . . , vL, then the vector v+ .
= v1 ⊗ . . .⊗ vL is a highest weight vector for

the monodromy matrix, and thus an eigenvector of the transfer matrices:

Tij(u) v+ = 0 , 1 ≤ j < i ≤ M + N , (3.7)

Tkk(u) v+ =

(
L∏

n=1

λ
[n]
k (u)

)

v+ .
= λk(u)v+ . (3.8)

Eq. (3.8) allows to compute the eigenvalue of st(u):

t(u) v+ = Λ̂0(u) v+ , with Λ̂0(u)
.
=

M+N∑

k=1

λk(u) =

M+N∑

k=1

L∏

n=1

λ
[n]
k (u) , (3.9)

st(u) v+ = Λ0(u) v+ , where Λ0(u)
.
=

M+N∑

k=1

(−1)[k]λk(u) =

M+N∑

k=1

(−1)[k]
L∏

n=1

λ
[n]
k (u) . (3.10)

Using evaluation representations (2.26), evπn for 1 ≤ n ≤ L, with highest weight

λ
[i]
k (u) = 1 + (−1)[k] ~

u − ai
µ

[i]
k ,

we easily get the highest weight of the representation:

ev~π (Tkk(u)) v+ =

L∏

n=1

(
1 + (−1)[k] ~

u − an
µ

[n]
k

)
v+ , k = 1, . . . ,M + N ,

ev~π (st(u)) v+ =
M+N∑

k=1

(−1)[k]
L∏

n=1

(
1 + (−1)[k] ~

u − an
µ

[n]
k

)
v+ .
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It is important for what follows to remark that the above relations imply that the entries

of the matrix (u − an)T (u) in a ev~π representation are analytical. From now on, we will

use for the local and monodromy matrices the normalizations:

T
[n]
k (u) 7→ (u − an)T

[n]
k (u) , and T (u) 7→

L∏

n=1

(u − an)T (u) , (3.11)

that ensure analyticity of their entries. The transfer matrix will be accordingly normalized.

Notice that with the normalization (3.11) the highest weight in the evπn representation

reads:

λ
[n]
k (u) = u − an + (−1)[k]

~ µ
[n]
k and λk(u) =

L∏

n=1

(
u − an + (−1)[k]

~ µ
[n]
k

)
. (3.12)

Nevertheless, let us stress the fact that the above calculation only relies on the existence

of a highest weight vector, and thus remains valid for infinite dimensional (highest weight)

representations. When the representations are finite dimensional, it is possible to rewrite

Λ0(u) in terms of Drinfeld polynomials. Indeed, we will see that the BAEs depend on the

representation only through the Drinfeld polynomials.

3.4 Dressing hypothesis

Having determined the form of the pseudovacuum eigenvalue we assume now the following

form for the general transfer matrix eigenvalues:

Λ̂(u) =

M+N∑

k=1

λk(u) Âk−1(u) , (3.13)

Λ(u) =

M+N∑

k=1

(−1)[k]λk(u)Ak−1(u) , (3.14)

where the so-called dressing functions Ai(u) and Âi(u), i = 0, . . . ,M + N − 1 are to be

determined implementing a number of constraints upon the spectrum:

1. the R matrix and monodromy matrix being written in terms of rational functions of

the spectral parameter u, one assumes that Al(u), ∀ l, are also rational functions;

2. analyticity requirements imposed on the spectrum lead to the assumption that Al(u)

(resp. Âl(u)) has common poles with Al±1(u) (resp. Âl±1(u)) only;

3. the poles of the dressing functions will be assumed simple: the relation between Al(u)

and Al+1(u) poles is the simplest one which ensures the analyticity of the eigenvalues;

4. the asymptotic expansion of the transfer matrix will provide information about the

number of factors in the aforementioned rational functions;

5. the generalized fusion provides relations among the dressing functions.
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Requirements 1. and 2. fix the following form for the dressing functions:

Al(u) =






M (l)∏

j=1

u − α
(l)
j

u − u
(l)
j − ~

l
2

M (l+1)∏

j=1

u − β
(l+1)
j

u − u
(l+1)
j − ~

l+1
2

, 0 ≤ l < M ,

M (l)∏

j=1

u − α
(l)
j

u − u
(l)
j − ~

(
M− l

2

)
M (l+1)∏

j=1

u − β
(l+1)
j

u − u
(l+1)
j − ~

(
M− l+1

2

) , M ≤ l < M + N ,

(3.15)

where M (0) = M (M+N ) = 0, while the values of the integers M (l), l = 1, . . . ,M+N−1 are

to be determined by means of asymptotic expansion (point 4. above), as will be shown in

the next section; the shifts in the denominators have been introduced for later convenience.

The next step consists in finding constraints to determine α
(l)
j and β

(l)
j in terms of u

(l)
j .

This is achieved by means of the generalized fusion procedure.

3.4.1 Values of the gl(M|N ) Cartan generators

As we have seen in section 3.2, the generators of the finite-dimensional gl(M|N ) super-

algebra commute with the transfer matrix. It is thus possible to relate the integers M (l),

l = 1, . . . ,M + N − 1, appearing in the Λ(u) dressing to the eigenvalues of the Cartan

generators of gl(M|N ). This can be done in the following way.

Taking first the u → ∞ in the expression (3.14) for Λ(u) for an L sites chain, one gets

Λ(u) ∼ uL(M−N ) + uL−1
M+N∑

k=1

(−1)[k]
~

(
λ

(1)
k − M (k−1) + M (k)

)
,

where we set λk(u) = u+~λ
(1)
k +O

(
1
u

)
. On the other hand, the same expansion performed

on the transfer matrix st(u) leads to

st(u) ∼ uL(M−N ) + uL−1
M+N∑

k=1

~

(
L∑

n=1

E
[n]
k

)

,

where
∑L

n=1 E
[n]
k =

∑L
n=1(−1)[k]T

(1)[n]
kk is the k-th diagonal generator of the global gl(M|N )

symmetry algebra of the chain. Starting then from a transfer matrix eigenvector with

eigenvalue (3.14), one can write

(−1)[k]hk = λ
(1)
k − M (k−1) + M (k) ,

where hk is the eigenvalue of the diagonal generator
∑L

n=1 E
[n]
k . For the Cartan generators

of gl(M|N ), sk = (−1)[k]Ek − (−1)[k+1]Ek+1, one gets

sk v =
(
2M (k) − M (k−1) − M (k+1) + λ

(1)
k − λ

(1)
k+1

)
v .

The above calculation shows that the values of the M (k) integers are related to the conserved

charges of the global symmetry of the chain: one must then take care that simplifications

in the dressing functions resulting from the fusion procedure do not change their number

of factors. In other words each M (k) should be kept independent from each other and only

relations between the other parameters appearing in the dressing are allowed, as we will

shown in the next section.
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3.4.2 Generalized fusion from quantum Berezinian

The relations (2.32), (2.34) and (2.35), between T ∗(u) and T (v) show that we can define

another transfer matrix st∗(u) = strT ∗(u) which obeys

[st(u) , st∗(v)] = 0 and [st∗(u) , st∗(v)] = 0 (3.16)

so that one can consider the dressing of st∗(u) simultaneously with the one of st(v):

Λ∗(u) =

M+N∑

k=1

(−1)[k]λ∗
k(u)A∗

k(u) , (3.17)

where T ∗
kk(u) v+ = λ∗

k(u) v+ and

A∗
l (u)=






M (l)∏

j=1

u − α
∗(l)
j

u − u
∗(l)
j − ~

(
M− l

2

)
M (l+1)∏

j=1

u − β
∗(l+1)
j

u − u
∗(l+1)
j −~

(
M− l+1

2

) , 0 ≤ l < M ,

M (l)∏

j=1

u − α
∗(l)
j

u − u
∗(l)
j − ~

l
2

M (l+1)∏

j=1

u − β
∗(l+1)
j

u − u
∗(l+1)
j − ~

l+1
2

, M ≤ l < M+N .

Let AM, AN , ΠM|N be the one-dimensional projectors defined in section 2.3.5 which

act on auxiliary spaces 1, . . . ,M + N and denote

T T ∗ = TM(u − ~N ) · · · T1(u + ~(M−N − 1))T ∗
M+N (u − ~) · · · T ∗

M+1(u − ~N ) .

Then, from the following relation

T T ∗ = Ber(u)AMAN + (1 − ΠM|N )T T ∗AMAN + T T ∗(1 − AMAN ) , (3.18)

we deduce, by taking the supertrace in the spaces 1, . . . ,M + N , that

st(u− ~N ) · · · st(u + ~(M−N − 1))st∗(u − ~) · · · st∗(u− ~N ) = (−1)NBer(u) + st
(1)
f (u) ,

where st
(1)
f (u) = str1...M+N

[
(1 − ΠM|N )T T ∗AMAN + T T ∗(1 − AMAN )

]
is a so-called

fused transfer matrix. Then, acting with relation (3.18) on any (st(u) and st∗(u)) eigen-

vector v with eigenvalues Λ(u), Λ∗(u), one obtains

Λ(u − ~N ) · · ·Λ(u + ~(M−N − 1))Λ∗(u − ~) · · ·Λ∗(u − ~N ) =

= (−1)N
M∏

k=1

λk(u − ~(N − k + 1))

M+N∏

l=M+1

λ′
l(u + ~(M + N − l + 1)) + Λ

(1)
f (u) , (3.19)

where Λ
(1)
f (u) v = st

(1)
f (u) v and we have used eq. (2.71). Let us remark that this relation

shows that v is also an eigenvector of t
(1)
f (u). Using the postulated expression (3.14) for the

eigenvalues and picking the term proportional to
∏M

k=1 λk(u−~(N −k+1))
∏M+N

l=M+1 λ′
l(u+

~(M+N − l+1)) in eq. (3.19), we deduce a first constraint between the dressing functions,

namely

A0(u − ~N ) · · ·AM−1(u + ~(M−N − 1))A∗
M(u − ~N ) · · ·A∗

M+N−1(u − ~) = 1 . (3.20)
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The simplest non-trivial choice of the α
(k)
j , α

∗(k)
j and β

(k)
j , β

∗(k)
j satisfying this constraint

is to set α
(k)
j = u

(k)
j + ~

2 (k + 2), β
(k+1)
j = u

(k+1)
j + ~

2 (k − 1), ∀ j, for k = 0, . . . ,M − 1,

u
∗(M)
j = u

(M)
j − ~M, and α

∗(k)
j = u

∗(k)
j + ~

2 (k + 2), β
∗(k+1)
j = u

∗(k+1)
j + ~

2 (k − 1), ∀ j, for

k = M, . . .M + N − 1 in such a way that

Ak(u) =
M (k)∏

j=1

u − u
(k)
j − ~

k+2
2

u − u
(k)
j − ~

k
2

M (k+1)∏

j=1

u − u
(k+1)
j − ~

k−1
2

u − u
(k+1)
j − ~

k+1
2

, k = 0, . . . ,M− 1 ,

A∗
k(u) =

M (k)∏

j=1

u − u
∗(k)
j − ~

k+2
2

u − u
∗(k)
j − ~

k
2

M (k+1)∏

j=1

u − u
∗(k+1)
j − ~

k−1
2

u − u
∗(k+1)
j − ~

k+1
2

, k = M, . . . ,M + N − 1 ,

and cancelations occur between dressing functions labeled by consecutive indices in expres-

sion (3.20). To fix the values of the α
(k)
j and β

(k)
j for k ≥ M we start setting

T ′T = T ′
M(u + ~(M− 1)) · · · T ′

1 (u)TM+N (u + ~(M− 1)) · · · TM+1(u + ~(M−N ))

and supertracing in all auxiliary spaces the identity

T ′T = Ber−1(u)AMAN + (1 − ΠM|N )T ′T AMAN + T ′T (1 − AMAN ) , (3.21)

we get

st∗(u+~(M−1)) · · · st∗(u)st(u+~(M−1)) · · · st(u+~(M−N )) = (−1)NBer−1(u)+st
(2)
f (u) ,

where st
(2)
f (u) = str1...M+N

[
(1 − ΠM|N )T ′T AMAN + T ′T (1 − AMAN )

]
. Acting again

with the above equation on v, one obtains

Λ∗(u + ~(M− 1)) · · ·Λ∗(u)Λ(u + ~(M− 1)) · · ·Λ(u + ~(M−N )) =

= (−1)N
M∏

l=1

λ′
l(u + ~(M− l))

M+N∏

l=M+1

λl(u + ~(2M− l)) + Λ
(2)
f (u) , (3.22)

where Λ
(2)
f (u) v = t

(2)
f (u) v and eq. (2.74) has been used. Picking up the term proportional

to λ′
l(u+~(M− l))

∏M+N
l=M+1 λl(u+~(2M− l)), we get a second constraint on the dressing

functions:

A∗
0(u+~(M−1)) · · ·A∗

M−1(u)AM(u+~(M−1)) · · ·AM+N−1(u+~(M−N )) = 1 . (3.23)

To satisfy this second constraint we set α
(k)
j = u

(k)
j + ~(M − k

2 − 1), β
(k+1)
j = u

(k+1)
j +

~(M − k−1
2 ) for k = M, . . . ,M + N − 1, and α

∗(k)
j = u

∗(k)
j + ~(M − k

2 − 1), β
∗(k+1)
j =

u
∗(k+1)
j + ~(M− k−1

2 ) for k = 0, . . . ,M− 1, so that

Ak(u) =

M (k)∏

j=1

u − u
(k)
j − ~

(
M− k

2 − 1
)

u − u
(k)
j − ~

(
M− k

2

)
M (k+1)∏

j=1

u − u
(k+1)
j −~

(
M− k−1

2

)

u − u
(k+1)
j −~

(
M− k+1

2

) ,M ≤ k < M+N ,

A∗
k(u) =

M (k)∏

j=1

u − u
∗(k)
j − ~

(
M− k

2 − 1
)

u − u
∗(k)
j − ~

(
M− k

2

)
M (k+1)∏

j=1

u − u
∗(k+1)
j − ~

(
M− k−1

2

)

u − u
∗(k+1)
j − ~

(
M− k+1

2

) , 0 ≤ k < M .

Again, it is seen that u
∗(M)
j = u

(M)
j − ~M.
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Remark 1. Relations (3.20) and (3.23) also hold when the Al(u), A∗
l (u) functions are re-

placed with Âl(u), Â∗
l (u), thus leading to the same form for the dressing functions appearing

in the eigenvalues (3.13) and (3.14).

Remark 2. Using the ck integers introduced in proposition 5, one can write a single ex-

pression for the dressing functions:

Ak(u) =

M (k)∏

j=1

u − u
(k)
j − ~

2

(
ck+1 + (−1)[k+1]

)

u − u
(k)
j − ~

2ck

M (k+1)∏

j=1

u − u
(k+1)
j − ~

2

(
ck − (−1)[k+1]

)

u − u
(k+1)
j − ~

2ck+1

,

A∗
k(u) =

M (k)∏

j=1

u − u
∗(k)
j − ~

2 (2M− ck+1 − (−1)[k+1])

u − u
∗(k)
j − ~

2 (2M− ck)

M (k)∏

j=1

u − u
∗(k+1)
j − ~

2 (2M− ck−1)

u − u
∗(k+1)
j − ~

2 (2M− ck+1)
,

k = 1, . . . ,M + N − 1 , . (3.24)

3.5 Bethe equations of closed spin chains

We have seen in the previous section that Al(u) = Âl(u), and that they have the form

Al(u) =

M (l)∏

k=1

u − u
(l)
k − ~

l+2
2

u − u
(l)
k − ~

l
2

M (l+1)∏

k=1

u − u
(l+1)
k − ~

l−1
2

u − u
(l+1)
k − ~

l+1
2

, 0 ≤ l < M ,

Al(u) =

M (l)∏

k=1

u−u
(l)
k − ~

(
M− l

2−1
)

u − u
(l)
k −~

(
M− l

2

)
M (l+1)∏

k=1

u−u
(l+1)
k − ~

(
M− l−1

2

)

u − u
(l+1)
k − ~

(
M− l+1

2

) ,M ≤ l < M + N ,

with the convention M (0) = M (M+N ) = 0.

In order to establish analyticity of all eigenvalues of Λ(u) and of Λ̂(u), one imposes

that the residues of Λ(u) and Λ̂(u) at u = u
(n)
j + ~

n
2 for 1 ≤ j ≤ M (n), 0 < n < M, and

at u = u
(n)
j + ~ (M− n

2 ) for 1 ≤ j ≤ M (n), M ≤ n ≤ M + N − 1, all vanish.

Introducing the function

en(u)
.
=

u − ~
n
2

u + ~
n
2

, (3.25)

the vanishing of these residues leads to the following (Bethe ansatz) equations:

M (n−1)∏

k=1

e−1(u
(n)
j −u

(n−1)
k )

M (n)∏

k 6=j

e2(u
(n)
j −u

(n)
k )

M (n+1)∏

k=1

e−1(u
(n)
j −u

(n+1)
k ) =

λn(u
(n)
j +~

n
2 )

λn+1(u
(n)
j +~

n
2 )

,

1 ≤ j ≤ M (n) , 0 < n < M (3.26)

M (n−1)∏

k=1

e1(u
(n)
j −u

(n−1)
k )

M (n)∏

k 6=j

e−2(u
(n)
j −u

(n)
k )

M (n+1)∏

k=1

e1(u
(n)
j −u

(n+1)
k ) =

λn(u
(n)
j +~(M− n

2 ))

λn+1(u
(n)
j +~(M− n

2 ))
,

1 ≤ j ≤ M (n) , M < n < M + N (3.27)

M (M−1)∏

k=1

e−1(u
(M)
j − u

(M−1)
k )

M (M+1)∏

k=1

e1(u
(M)
j − u

(M+1)
k ) = ±

λM+1(u
(M)
j + ~

M
2 )

λM(u
(M)
j + ~

M
2 )

,

1 ≤ j ≤ M (M) (3.28)
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where in the last equation the + sign (resp. − sign) corresponds to the Λ(u) BAE (resp.

Λ̂(u) BAE). One recognizes in the left-hand side of the BAEs the Cartan matrix of the

gl(M|N ) superalgebra, while the right-hand side reflects the super-Yangian representa-

tion(s) spanned by the spin chain.

When the representations are finite dimensional, the right-hand side of these equations

can be re-expressed in terms of Drinfeld polynomials. For instance, for the first set of BAEs,

one gets

λn(u
(n)
j + ~

n
2 )

λn+1(u
(n)
j + ~

n
2 )

=
Pn(u

(n)
j + ~

n
2 )

Pn(u
(n)
j + ~

n−1
2 )

where Pi(u) =
L∏

n=1

P
[n]
i (u) , (3.29)

P
[n]
i (u) being the Drinfeld polynomials for each site.

4. Bethe equations for arbitrary Dynkin diagrams

As already mentioned, up-to-now we have worked with the distinguished Dynkin diagram

and its associated gradation. However, several Dynkin diagrams can be used to describe

the same superalgebra, leading to inequivalent Dynkin diagram, and thus to different pre-

sentations of the Bethe equations. For each of the grading (i.e. for each inequivalent

Dynkin diagram), one can apply the above procedure to determine the form of the dress-

ing functions. This has been noticed in [26] for open super-spin chains in the fundamental

representation of sl(M|N ). We generalize it for arbitrary super-spin chains. The dressing

functions keep essentially the same structure, with the following rules.

The inequivalent Dynkin diagrams of the sl(M|N ) superalgebras contain only bosonic

roots of same square length (”white dots”), normalized to 2, and isotropic fermionic roots

(”grey dots”), which square to zero. A given diagram is completely characterized by the

p-uple of integers 0 < n1 < . . . < np < M + N labelling the positions of the grey dots of

the diagram: where the total number of (grey and white) dots is M + N − 1. Formally,

n1 n2 np
︸ ︷︷ ︸

n1−1
︸ ︷︷ ︸
n2−n1−1

︸ ︷︷ ︸
M+N−np−1

we define n0 = 0 and np+1 = M+N although there is actually no root at these positions.

Such a diagram defined by the p-uple (ni)i=1...p corresponds to the superalgebra sl(M|N )

with

M =
∑

i odd
i≤p+1

ni −
∑

i even
i<p+1

ni and N =
∑

i even
i≤p+1

ni −
∑

i odd
i<p+1

ni . (4.1)

Accordingly, the Z2-grading is defined by

[j] =
1 − (−1)k

2
, i.e. (−1)[j] = (−1)k , for nk + 1 ≤ j ≤ nk+1 , 0 ≤ k ≤ M + N .

(4.2)
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For each of these gradings, one can compute a new value for the parameters

ck =
k∑

j=1

(−1)[j] , k = 1, . . . ,M + N . (4.3)

Then, the dressing functions will keep the same form (3.24), but with now the above value

for the parameters ck. Computing the residues for Λ(u) with these new dressing functions,

leads to the Bethe equations

(1 − (−1)[l]〈αℓ, αℓ〉)
M+N−1∏

k=1

M (k)∏

j=1

e〈αℓ ,αk〉(u
(ℓ)
i − u

(k)
j ) =

λℓ(u
(ℓ)
i + ~

2 cℓ)

λℓ+1(u
(ℓ)
i + ~

2 cℓ)
,

i = 1, . . . ,M (ℓ) , 1 ≤ ℓ < M + N − 1 . (4.4)

where 〈αℓ, αk〉 is the scalar product of the simple roots, numbered as they are ordered by

the chosen Dynkin diagram. This single set of equations describe all the Bethe equations,

whatever the gradation (the Dynkin diagram) is, and whatever the representations on

each site of the spin chain are. In the particular case of only (mixture of) fundamental

representation and/or its contragredient on all sites, we recover the isotropic limit (q → 1)

of the spectrum and BAE computed in [27]. These equations are also equivalent to the

ones presented in [16], the different gradations here being related to the different possible

paths (forms of the ‘hook’) in [16].

Explicitely, in sl(M|N ), denoting αj the simple roots, that we label according to their

position j = 1, . . . ,M+N in the Dynkin diagram, their norm is given by 〈αj , αj〉 = (−1)[j] 2

for the bosonic ‘white’ roots and by 〈αj , αj〉 = 0 for the fermionic ‘grey’ roots. More-

over, the scalar products between different simple roots are all zero but for the sim-

ple roots which are linked in the Dynkin diagram. Linked roots have scalar product

〈αj , αj+1〉 = −(−1)[j+1]. For more informations on the construction of simple roots and

Dynkin diagrams for superagebras, see e.g. [20].

It should be clear that, since the different presentations (i.e. Dynkin diagrams) describe

the same superalgebra and the same representations on the chain, the spectrum will be

identical, although the dressing functions and the BAE look different.

4.1 Bethe equations for the symmetric grading

In the case of sl(M|2n), there exists a symmetric Dynkin diagram with two isotropic

fermionic simple roots in positions n and M + n:

︸ ︷︷ ︸
n−1

︸ ︷︷ ︸
M−1

︸ ︷︷ ︸
n−1

We give here the explicit expression for the dressing functions and Bethe Ansatz equations

for this diagram, thus taking N = 2n, and ordering the indices as in eq. (2.8):

[i] =

{
0 , 1 ≤ i ≤ n and M + n + 1 ≤ i ≤ M + N ,

1 , n + 1 ≤ i ≤ M + n .
,
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i.e.

ck =






k , k ≤ n ,

N − k , n < k ≤ M + n ,

k − 2M , M + n < k ≤ M + N .

(4.5)

This choice of the grading implies that the elements of T (M)(u) (resp. T (N )(u)) generate

now a Y−~(M) (resp. Y~(N )) bosonic subalgebra. As a consequence, the expressions for

the quantum Berezinian and its inverse are modified as follows:

Ber(u) = qdet T (N )(u − ~(M−N + 1)) qdet T ∗(M)(u − ~M) ,

Ber−1(u) = qdetT ∗(N )(u + ~(N − 1)) qdet T (M)(u − ~(M−N )) .

To determine its value on v+ we rewrite the quantum Berezinian for the symmetric Dynkin

diagram case as

Ber(u) =
∑

σ∈SN

sgn (σ)Tσ(1),1(u − ~(M−N + 1)) · · · Tσ(n),n(u − ~(M− n)) ×

×TM+σ(n+1),M+n+1(u − ~(M− n + 1)) · · · TM+σ(N ),M+N (u − ~M) ×

×
∑

τ∈SM

sgn (τ)T ∗
n+τ(1),n+1(u − ~M) · · · T ∗

n+τ(M),n+M(u − ~) ,

obtaining:

Ber(u) v+ =

n∏

l=1

λl(u−~(M−l+1))

M+n∏

l=n+1

λ∗
l (u−~(M−l+n+1))

M+N∏

l=M+n+1

λl(u−~(2M−l+1)) v+

In the same way we can compute the constant value of Ber−1(u) on the v+ module. Since

Ber−1(u) =
∑

σ∈SN

sgn (σ)T ∗
σ(1),1(u + ~(N − 1)) · · · T ∗

σ(n),n(u + ~n) ×

× T ∗
M+σ(n+1),M+n+1(u + ~(n − 1)) · · · T ∗

M+σ(N ),M+N (u) ×

×
∑

τ∈SM

sgn (τ)Tn+τ(1),n+1(u − ~(M−N )) · · · Tn+τ(M),n+M(u + ~(N − 1)) ,

we get

Ber−1(u) v+ =

n∏

l=1

λ∗
l (u+~(N−l))

M+n∏

l=n+1

λl(u−~(N−l+n))

M+N∏

l=M+n+1

λ∗
l (u+~(M+N−l)) v+ .

The steps leading to the dressing functions (3.24) can now be repeated taking into account

the different form of the value of the quantum Berezinian: in particular, one can show that

the constraints (3.20) and (3.23) are to be replaced with:

A0(u) · · ·An−1(u + ~(n − 1))A∗
n(u) · · ·A∗

M+n−1(u + ~(M− 1))×

×AM+n(u + ~n) · · ·AM+N−1(u + ~(N − 1)) = 1 , (4.6)
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and

A∗
0(u + ~(N − 1)) · · ·A∗

n−1(u + ~n)An(u + ~(N − 1)) · · ·AM+n−1(u + ~(N −M))×

×A∗
M+n(u + ~(n − 1)) · · ·A∗

M+N−1(u) = 1 . (4.7)

Both these constraints are satisfied by the dressing functions (3.24). As a general rule, at

each fermionic root two dressing functions A and A∗ meet, and the u
(k)
j parameters must

satisfy an additional relation3 of the form u
∗(k)
j = u

(k)
j − ~M. We are now in position to

write the Bethe Ansatz equations for the symmetric Dynkin diagram, requiring the transfer

matrix eigenvalue

Λ(u) =

M+N∑

k=1

(−1)[k]Ak−1(u)λk(u)

to have vanishing residues at u = u
(l)
j + ~

2 cl for l = 1, . . . ,M + N − 1 and j = 1, . . . ,M (l).

The BAEs take the form:

M (l−1)∏

k=1

e−1(u
(l)
j −u

(l−1)
k )

M (l)∏

k 6=j

e2(u
(l)
j −u

(l)
k )

M (l+1)∏

k=1

e−1(u
(l)
j −u

(l+1)
k )=

λl+1(u
(l)
j + ~

2cl)

λl(u
(l)
j + ~

2cl)
,

1 ≤ j ≤ M (l) , 1 ≤ l < n and M + n + 1 < l < M + N

M (n−1)∏

k=1

e−1(u
(n)
j − u

(n−1)
k )

M (n+1)∏

k=1

e1(u
(n)
j − u

(n+1)
k )=

λn+1(u
(n)
j + ~

2n)

λn(u
(n)
j + ~

2n)
,

M (l−1)∏

k=1

e1(u
(l)
j − u

(l−1)
k )

M (l)∏

k 6=j

e−2(u
(l)
j − u

(l)
k )

M (l+1)∏

k=1

e1(u
(l)
j − u

(l+1)
k )=

λl+1(u
(l)
j + ~(M− l

2))

λl(u
(l)
j + ~(M− l

2))
,

1 ≤ j ≤ M (l) , n < l < M + n

M (M+n−1)∏

k=1

e1(u
(M+n)
j −u

(M+n−1)
k )

M (M+n+1)∏

k=1

e−1(u
(M+n)
j −u

(M+n+1)
k )=

λM+n+1(u
(M+n)
j + ~

2 (n −M))

λM+n(u
(M+n)
j + ~

2 (n −M))
,

in agreement with eq. (4.4).

5. Open super-spin chains

5.1 Open chains monodromy and transfer matrices

As in the closed chain case the supercommutation relations defining the reflection algebra

allow us to show that the transfer matrix

b(u) = str
(
K+(u)B(u)

)
=

M+N∑

k,l=1

(−1)[k]K+
kl(u)Blk(u) . (5.1)

3In the distinguished Dynkin diagram case there is only one fermionic root, corresponding to the u
∗(M)
j =

u
(M)
j − ~M relation obtained in the previous section.
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generates a commutative family

[b(u) , b(v)] = 0 ,

provided the matrix K+(u) obeys the ‘dual’ reflection equation:

R12(−u + v) K+
1 (u)t R21(−u − v − ~(M−N )) K+

2 (v)t =

K+
2 (v)t R12(−u − v − ~(M−N )) K+

1 (u)t R21(−u + v). (5.2)

The classification of such matrices is deduced from the proposition 4. Indeed, if K+(u)

obeys the dual reflection equation (5.2), then K+(−u − ~ ρ)t, with ρ = M − N , obeys

reflection equation (2.78), so that K+(u) = U ′
(
E
′ + ξ′

u I

)
U

′−1 for some new parameters

U ′, E
′ and ξ′.

We further assume that the matrix K+(u) commute with the matrix K−(v). Then, all

the Kpm(u) matrices are diagonalizable by the same matrix U , independent of the spectral

parameter. Thus, one can assume that K+(u) is also diagonal and analytic:

K+(u) = diag (ξ′ − u, . . . , ξ′ − u︸ ︷︷ ︸
L′

1

, u + ξ′, . . . , u + ξ′︸ ︷︷ ︸
L′

2−L′
1

, ξ′ − u, . . . , ξ′ − u) . (5.3)

Again, upon representation, one constructs a monodromy matrix B(u) for the L sites

open chain. In order to get analytical entries for the transfer matrix, we adopt the nor-

malization (3.11) for T (u) and T (u), and define:

B(u) = (T (u) ⊗ · · · ⊗ T (u)) K(u)
(
T −1(−u) ⊗ · · · ⊗ T −1(−u)

)
. (5.4)

b̂(u) = str
(
K+(u)B(u)

)
=

M+N∑

k=1

(−1)[k]K+
kk(u)Bkk(u) . (5.5)

5.2 Symmetry of transfer matrices

As we did in section 3.2 for the closed chain case, we now turn to determine the symmetry

of the model whose transfer matrix is given by (5.1). Without any loss of generality we

assume in what follows that L1 < M < L2.

Proposition 6. We consider the transfer matrix b(u) describing open spin chain models

with boundary conditions given by K(u) and K+(u), see eq. (2.83) and (5.3), with L1, L
′
1 <

M and L2, L
′
2 > M. Let

mj = min(Lj, L
′
j) and Mj = max(Lj , L

′
j) , j = 1, 2 .

Then, b(u) admits a gl(m1|M + N − m2) ⊕ G ⊕ gl(M− M1|M2 −M) symmetry, where

G =






gl(M1 − m1) ⊕ gl(M2 − m2) , if (m1 ,m2) = (L1 , L2) or (m1 ,m2) = (L′
1 , L′

2) ,

gl(M1 − m1|M2 − m2) otherwise .
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Proof. Supertracing in the first auxiliary space the supercommutation relations (2.80), and

expanding them in u and v, one reads, from the v1 order term

[
b(u) , B

(1)
ij

}
= −Bij(u)

(
K+

ii (u) − K+
jj(u)

)
(θi + θj) . (5.6)

Since B
(1)
ij = 0 when θi + θj = 0 (see eq. 2.82), one deduces that a non-zero generator B

(1)
ij

commutes with b(u) if and only if K+
ii (u) = K+

jj(u), that is to say θ′i = θ′j. The symmetry

(super)algebra is thus generated by the elements of gl(L1|M+N−L2)⊕gl(M−L1|L2−M)

obeying this relation: an enumeration of them ends the proof.

5.3 Pseudovacuum for open chain transfer matrices

A direct computation, using the result of propositions 5 and 2, shows that the highest

weight vector v+ is an eigenvector of b̂(u):

b̂(u) v+ =

M+N∑

j=1

(−1)[j]K+
jj(u)Bjj(u) v+ = Λ0(u) v+ ,

Λ0(u) =
M+N∑

j=1

(−1)[j] gj(u)βj(u) .

Here the functions gj(u), j = 1, . . . ,M + N , depend only on the boundary matrix, while

the functions βj(u) are determined by the representations on the chain:

gj(u) =
2u(2u − ~(M−N ))

(2u − ~cj−1)(2u − ~cj)
Kjj(u)K+

jj(u) (5.7)

βj(u) =

(
j−1∏

m=1

λm(−u + ~cm)

)

λj(u)




M+N∏

m=j+1

λm(−u + ~cm−1)



 . (5.8)

In the above expressions the λk(u)’s are again the products of the eigenvalues for each

site of the chain, as in (3.12).

5.4 Dressing functions for open chains

We assume that all the eigenvalues of b(u) can be written as

Λ(u) =

M+N∑

k=1

(−1)[k] gk(u)βk(u)Ak−1(u) , (5.9)

with gk(u) and βk(u) given by (5.7) and (5.8) respectively, and dressing functions Ak(u)

to be determined. The vanishing of the residues of Λ(u) at u = ~

2 ck implies that

Ak−1(
~

2
ck) = Ak(

~

2
ck) , for 1 ≤ k ≤ M−N − 1 .
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Using expression (3.15) for the dressing functions one can show that the M (k)’s are even

and that the simplest non-trivial way to satisfy the above constraint is to set

Ak(u) =

M (k)∏

j=1

u − u
(k)
j − ~

2

(
ck+1 + (−1)[k+1]

)

u − u
(k)
j − ~

2 ck

u + u
(k)
j − ~

2

(
ck+1 + (−1)[k+1]

)

u + u
(k)
j − ~

2 ck

×
M (k+1)∏

j=1

u − u
(k+1)
j − ~

2

(
ck − (−1)[k+1]

)

u − u
(k+1)
j − ~

2 ck+1

u + u
(k+1)
j − ~

2

(
ck − (−1)[k+1]

)

u + u
(k+1)
j − ~

2 ck+1

,

for k = 0, . . . ,M + N − 1, with the usual convention M (0) = M (M+N ) = 0.

5.5 Bethe equations for the open chain

In order to establish analyticity of all eigenvalues , one imposes that the residues of Λ(u) at

u = u
(l)
n + ~

2cl, for 1 ≤ n ≤ M (l), 0 < l ≤ M+N −1, all vanish. Using the definition (3.25)

for the en(u) function one has the following set of Bethe Ansatz equation:

M (l)∏

j 6=n

e2(u
(l)
n − u

(l)
j )

M (l)∏

j=1

e2(u
(l)
n + u

(l)
j )

∏

τ=±1

M (l+τ)∏

j=1

e−1(u
(l)
n − u

(l+τ)
j ) e−1(u

(l)
n + u

(l+τ)
j ) =

=
βl(u

(l)
n + ~

2cl)

βl+1(u
(l)
n + ~

2cl)

gl(u
(l)
n + ~

2 cl)

gl+1(u
(l)
n + ~

2 cl)
, l = 1 ≤ l < M ,

M (M+1)∏

j=1

e1(u
(M)
n −u

(M+1)
j )e1(u

(M)
n +u

(M+1)
j )

M (M−1)∏

j=1

e−1(u
(M)
n −u

(M−1)
j )e−1(u

(M)
n +u

(M−1)
j ) =

=
βM(u

(M)
n + ~

2M)

βM+1(u
(M)
n + ~

2M)

gM(u
(M)
n + ~

2cM)

gM+1(u
(M)
n + ~

2cM)
, l = M ,

M (l)∏

j 6=n

e−2(u
(l)
n − u

(l)
j )

M (l)∏

j=1

e−2(u
(l)
n + u

(l)
j )

∏

τ=±1

M (l+τ)∏

j=1

e1(u
(l)
n − u

(l+τ)
j ) e1(u

(l)
n + u

(l+τ)
j ) =

=
βl(u

(l)
n + ~

2cl)

βl+1(u
(l)
n + ~

2cl)

gl(u
(l)
n + ~

2 cl)

gl+1(u
(l)
n + ~

2cl)
, l = M < l < M + N . (5.10)

As in the closed case, the left hand side of the Bethe equations only depends on the choice of

the algebra, while the right hand side explicitly depends on the choice of the representation

(through the βl(u)’s functions, eq. (5.8)) and on the reflection matrix (through the gl(u)’s

functions, eq. (5.7)).

5.6 Bethe equations for other Dynkin diagrams

We turn now to the calculation of the spectrum and Bethe equations of open super-spin

chains for other Dynkin diagrams. The rules will be the same as the ones given for the

closed case (see section 4). The functions gk(u) have a form similar to (5.7), with a change
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of increasing or decreasing behaviour of the poles each time a grey (fermionic) root is met,

due to the change in the definition of the Z2-grading, and thus in the parameters ck, as

given in (4.3).

The Bethe Ansatz equations read, for ℓ = 1, . . . ,M + N − 1 and i = 1, . . . ,M (ℓ)

ǫℓ

M+N−1∏

k=1

M (k)∏

j=1

e〈αℓ,αk〉(u
(ℓ)
i −u

(k)
j )e〈αℓ,αk〉(u

(ℓ)
i +u

(k)
j ) =

βℓ(u
(ℓ)
i + ~

2 cℓ)

βℓ+1(u
(ℓ)
i + ~

2 cℓ)

gl(u
(l)
n + ~

2cl)

gl+1(u
(l)
i + ~

2cl)
,

where ǫℓ = (1 − (−1)[l]〈αℓ, αℓ〉), as in the closed spin chain case. As an example, we

specialize the above formulas to the symmetric Dynkin diagram case. The g functions are

in this case:

gl(u) =
u(u + ~(M−N )

2 )

(u + ~(l−1)
2 )(u + ~l

2 )
, l = 1, . . . ,N/2 , (5.11)

gl(u) =
u(u + ~(M−N )

2 )

(u + ~(N−l+1)
2 )(u + ~(N−l)

2 )
, l = N/2 + 1, . . . ,M + N/2 , (5.12)

gl(u) =
u(u + ~(M−N )

2 )

(u + ~(l−2M−1)
2 )(u + ~(l−2M)

2 )
, l = M + N/2 + 1, . . . ,M + N . (5.13)

The Bethe equations, obtained by imposing analiticity of Λ(u) at points u = u
(l)
k + ~cl/2,

for 1 ≤ k ≤ M (l) and l = 1, . . . ,M + N − 1, are:

M (l)∏

j 6=k

e2(u
(l)
k − u

(l)
j )

M (l)∏

j=1

e2(u
(l)
k + u

(l)
j )

∏

τ=±1

M (l+τ)∏

j=1

e−1(u
(l)
k − u

(l+τ)
j ) e−1(u

(l)
k + u

(l+τ)
j ) =

=
βl(u

(l)
k + ~

2 cl)

βl+1(u
(l)
k + ~

2 cl)

gl(u
(l)
n + ~

2cl)

gl+1(u
(l)
k + ~

2cl)
, 1 ≤ l < n and M + n < l < M + N , (5.14)

M (n−1)∏

j=1

e−1(u
(n)
k − u

(n−1)
j )e−1(u

(n)
k + u

(n−1)
j )

M (n+1)∏

j=1

e1(u
(n)
k − u

(n+1)
j )e1(u

(n)
k + u

(n+1)
j ) =

=
βn(u

(n)
k + ~

2 cn)

βn+1(u
(n)
k + ~

2 cn)

gn(u
(n)
k + ~

2cn)

gn+1(u
(n)
k + ~

2cn)
, l = n , (5.15)

M (l)∏

j 6=k

e−2(u
(l)
k − u

(l)
j )

M (l)∏

j=1

e−2(u
(l)
k + u

(l)
j )

∏

τ=±1

M (l+τ)∏

j=1

e1(u
(l)
k − u

(l+τ)
j ) e1(u

(l)
k + u

(l+τ)
j ) =

=
βl(u

(l)
k + ~

2 cl)

βl+1(u
(l)
k + ~

2 cl)

gl(u
(l)
n + ~

2cl)

gl+1(u
(l)
k + ~

2cl)
, n < l < M + n , (5.16)

M (l−1)∏

j=1

e1(u
(l)
k − u

(l−1)
j )e1(u

(l)
k + u

(l−1)
j )

M (l+1)∏

j=1

e−1(u
(l)
k − u

(l+1)
j )e−1(u

(l)
k + u

(l+1)
j ) =

=
βl(u

(l)
k + ~

2 cl)

βl+1(u
(l)
k + ~

2 cl)

gl(u
(l)
k + ~

2cl)

gl+1(u
(l)
k + ~

2cl)
, l = M + n . (5.17)
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6. Examples

In this section we discuss the application of our approach to few examples. We will replace

the ~ parameter with the imaginary unit −i, as it is customary in dealing with spin chains.

Let us stress that, although in all examples, the energies will look identical (up to

an irrelevant additive constant), the spectrum and Hamiltonians are indeed different. In

fact, the energies are functions of the Bethe roots, which obey different Bethe equations,

specified by the representations entering the spin chain.

6.1 Closed super-spin chain in the fundamental representation

Choosing for each site of the closed chain the fundamental representation, we get the usual

supersymmetric spin chains. In the fundamental representation, one has µ
[n]
i = δi,1 for all

sites n = 1, . . . , L, so that the eigenvalues (3.12) become:

λk(u) =






L∏

n=1

(u − an − i) k = 1 ,

L∏

n=1

(u − an) k 6= 1 .

(6.1)

Plugging these expressions in the Bethe equations of section 3.5, we get

M (n−1)∏

k=1

e−1(u
(n)
j − u

(n−1)
k )

M (n)∏

k 6=j

e2(u
(n)
j − u

(n)
k )

M (n+1)∏

k=1

e−1(u
(n)
j − u

(n+1)
k ) =

=






L∏

l=1

e1(u
(1)
j − al − i) , n = 1

1 , 1 < n < M

, 1 ≤ j ≤ M (n) , (6.2)

M (n−1)∏

k=1

e1(u
(n)
j − u

(n−1)
k )

M (n)∏

k 6=j

e−2(u
(n)
j − u

(n)
k )

M (n+1)∏

k=1

e1(u
(n)
j − u

(n+1)
k ) = 1 ,

1 ≤ j ≤ M (n) , M < n ≤ M + N − 1 , (6.3)

M (M−1)∏

k=1

e−1(u
(M)
j − u

(M−1)
k )

M (M+1)∏

k=1

e1(u
(M)
j − u

(M+1)
k ) = 1 , 1 ≤ j ≤ M (M) .(6.4)

Since here Tan(u) = Ran(u), its value at u = 0 is proportional to the graded permuta-

tion operator between the a (auxiliary) and n (quantum) spaces. Thus, we can construct

a local Hamiltonian in the usual way. Choosing an = 0 for all sites, we get

H = −i
d

du

(
ln st(u)

)∣∣∣
u=0

= −
L∑

n=1

Pn−1 ,n with P01 = PL1 . (6.5)

Here Pn−1 ,n is the graded permutation between sites n − 1 and n. In particular, in the

M = 1, N = 2 case we recover the supersymmetric t− J model, which corresponds to the
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Y(1|2) case [18]. The energies corresponding to the Hamiltonian (6.6) can be calculated

by taking the logarithmic derivative of Λ(u) and evaluating at u = 0, and are given by

E = L +

M (1)∑

j=1

1

(u
(1)
j )2 + 1

4

,

where the Bethe parameters u
(n)
j are solution to the Bethe equations (6.2)–(6.4) with

an = 0, ∀n.

A slightly generalized case is obtained taking ap = a 6= 0 for a particular site p, and

an = 0 for n 6= p. This leads to the following Hamiltonian:

H = −
L∑

n=1
n 6=p ,p+1

Pn−1 ,n+
1

a2+1

(
a2Pp−1 ,p+1+Pp+1 ,p−i aPp+1 ,p−1Pp ,p−1+i aPp ,p−1Pp+1 ,p−1

)
.

The energies get modified as follows:

E = −L +
a

a + i
+

M (1)∑

j=1

1

(u
(1)
j )2 + 1

4

for the where the Bethe parameters u
(n)
j are solution to the Bethe equations (6.2)–(6.4),

with now inhomogeneities an = δn,p a.

6.2 Closed spin chain with an impurity

Another case to which our formalism easily applies is the super-spin chain with one site

(the so-called impurity) in a representation different from the others. The easiest case is

again the spin chain where all sites are in the fundamental representation except for the

pth, associated to the highest weight µ
[p]
i , i = 1, . . . ,M + N . The right hand sides of the

Bethe equations are modified as follows:

λn(u
(n)
j − in

2 )

λn+1(u
(n)
j − in

2 )
=






(
e1(u

(1)
j − i)

)L−1 u
(1)
j − i

2 − iµ
[p]
1

u
(1)
j − i

2 − iµ
[p]
2

, n = 1 ,

u
(n)
j − in

2 − iµ
[p]
n

u
(n)
j − in

2 − iµ
[p]
n+1

, 1 < n < M ,

(6.6)

λn(u
(n)
j − i

(
M− n

2

)
)

λn+1(u
(n)
j − i

(
M− n

2

)
)

=
u

(n)
j − i

(
M− n

2

)
− iµ

[p]
n

u
(n)
j − i

(
M− n

2

)
− iµ

[p]
n+1

, M < n ≤ M + N − 1 , (6.7)

λM+1(u
(M)
j − iM2 )

λM(u
(M)
j − iM2 )

=
u

(M)
j − iM2 + iµ

[p]
M+1

u
(M)
j − iM2 − iµ

[p]
M

, (6.8)

where we set again an = 0 for all sites. The transfer matrix and the Hamiltonian of the

L-sites spin chain with one impurity can be written as

st(u) = stra (Ra,1(u) · · ·Ra,p−1(u)Ta,p(u)Ra,p+1(u) · · ·Ra,L(u)) , (6.9)

H = −i T−1
p+1,p(0) − Pp−1 ,p+1 T−1

p−1,p(0)Tp+1,p(0) −
L∑

n=1 , n 6=p−1,p

Pn ,n+1 . (6.10)
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It is worth noticing that all the quantum spaces n (but the p-th one) are isomorphic to the

auxiliary space a. Hence, Tn,p(u), n 6= p, is defined in the same way Ta,p(u) was introduced.

The spectrum of the Hamiltonian (6.10) is then given by:

E = −(L − 1) + i
µ′

1(0)

µ1(0)
+

M (1)∑

j=1

1

(u
(1)
j )2 + 1

4

.

6.3 Closed alternating spin chains

In alternating spin chains, the spins along the chain belong alternatively to two different

representations. As a particular example, one can take an even number of sites L for the

chain, and let the spins in the even sites be in the fundamental representation, while the

spins in the odd sites are in a different one. The transfer matrix for such a chain will then

be given by

st(u) = stra (Ta,1(u)Ra,2(u) · · · Ta,L−1(u)Ra,L(u)) ,

here the auxiliary space a is M + N dimensional. One gets a local Hamiltonian

H = −i
d

du
(ln st(u))

∣∣∣∣
u=0

= −

L/2∑

j=1

T−1
2j−2,2j−1(0)

{
i I + P2j−2,2jT2j−2,2j−1(0)

}
. (6.11)

Denoting by µj, j = 1, . . . ,M + N the weights of the representation on odd sites, and

µj(u) = u − i (−1)[j] µj, one gets for the eigenvalues (3.12)

λk(u) =

{ (
u − i

)L/2
µ1(u)L/2 k = 1 ,

uL/2 µk(u)L/2 1 < k ≤ M + N .

where we set an = 0 for all n. This leads to the spectrum

E = −
L

2

(
1 − i

µ′
1(0)

µ1(0)

)
+

M (1)∑

j=1

1

(u
(1)
j )2 + 1

4

,

6.3.1 Specialization to fundamental-adjoint alternating spin chain

Choosing e.g. the adjoint representation for the odd sites, i.e. highest weights µ
[n]
i = δi,1 for

even n and µ
[n]
i = δi1 + δi,M+N for odd n, one gets the following form for the eigenvalues

λk(u) =






(
u − i

)L
k = 1 ,

uL 1 < k < M + N ,
(
u + i

)L/2
uL/2 , k = M + N ,

The Bethe equations for 1 ≤ n ≤ M remain as in the fundamental representation case (6.2)

and (6.4), while the equations (6.3) for M < n ≤ M + N − 1 are modified as follows:

M (n−1)∏

k=1

e1(u
(n)
j − u

(n−1)
k )

M (n)∏

k 6=j

e−2(u
(n)
j − u

(n)
k )

M (n+1)∏

k=1

e1(u
(n)
j − u

(n+1)
k ) =

=





1 , M < n < M + N − 1 ,
(
e−1(u

(n)
j − iM−N

2 )
)L/2

, n = M + N − 1 ,
(6.12)
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with 1 ≤ j ≤ M (n). In this case, the monodromy matrix Taj(u) can be obtained through

the usual fusion procedure [28], starting with the fused R matrix:

Ra(bc)(u) = P+
bcRac(−u)Rtb

ab(u)P+
bc , (6.13)

where P+
bc = Ibc −

1
2ρQbc is a projector of dimension M + N − 1. The tensor product of

the spaces b and c is then considered as a single quantum space, and Taj(u) is obtained

from Ra(bc) through a suitable similarity transformation applied on both sides of (6.13),

yielding:

Raj(u) = uIaj + i (ea · ej) ,

Taj(u) = uIaj − i (ea · Ej) ,

where e and E respectively denote the gl(M|N ) generators in the fundamental and ad-

joint representations. The inner product · is defined, as usual, by means of the invariant,

nondegenerate bilinear form Kαβ on gl(M|N ), which is given as the supertrace on two

generators Kαβ = str (EαEβ):

A ·B =
∑

α,β

(K−1)αβAαAβ

Fusion allows also a direct calculation of Taj(u)−1, so that one gets an explicit expres-

sion of the Hamiltonian (6.11). It involves nearest-neighbour and next-nearest-neighbour

interaction terms:

H =

L/2∑

j=1,j even

H
(1)
j,j+1 +

L/2∑

j=1,j odd

H
(2)
j−1,j,j+1 , (6.14)

where

H
(1)
j,j+1 = −ej · Ej+1 +

1

2ρ
(ej · Ej+1)

2 , ρ = (M−N )/2 (6.15)

H
(2)
j−1,j,j+1 =

1

2ρ
(ej−1 · Ej) {2ρ + (ej−1 · Ej)} (ej−1 · ej+1) (ej−1 · Ej) . (6.16)

The spectrum of the Hamiltonian (6.14) reads:

E = −L +

M (1)∑

j=1

1

(u
(1)
j )2 + 1

4

.

6.4 The open alternating spin chain

We define the transfer matrix for a 2L-site open alternating chain as:

b(u) = stra

(
K+(u)Ta,1(u)Ra,2(u) · · · Ta,2L−1(u)Ra,2L(u)K(u) ×

×R−1
a,2L(−u)T−1

a,2L−1(−u) · · ·R−1
a,2(−u)T−1

a,1 (−u)
)

Here the matrices acting on the even sites are in the fundamental representation, coinciding

again with R(u), and the ones for the non-fundamental are denoted with T (u) and act on
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the odd sites of the chain. A local Hamiltonian can be obtained by taking the derivative

of b(u):

H =
1

ξ ξ′ρ

d

du
b(u)

∣∣∣∣
u=0

,

where we remind ρ = M−N while ξ and ξ′ characterize the boundary matrices K(u) and

K+(u) respectively as in (2.83), (5.3). One shows that

H =
1

ξ
K ′

2l(0) +
1

ξ′ρ
stra

(
dK+

a (u)

du

)∣∣∣∣
u=0

+
2

ρ
stra

{
(iI + Ta,1(0)Pa2) T−1

a,1 (0)
}

+2

l∑

k=2

(iI + T2k−2,2k−1(0)P2k−2,2k)T−1
2k−2,2k−1(0) .

We will suppose that the gradation is such that cm 6= 0 for m > 0. In the case of

distinguished gradation, this amounts to choose M > N . Then, the energy spectrum is

given by:

E = β L

(
1 +

M+N−1∑

m=1

1

cm
− i

M+N∑

m=1

µ′
m(−icm−1)

µm(−icm−1)

)
−

M (1)∑

j=1

2β

(u
(1)
j )2 + 1

4

+i β
ξ + ξ′

ξ ξ′
+ 2β

1 − ρ

ρ
, (6.17)

where β = β1(0). For the distinguished Dynkin diagram, and choosing the adjoint represen-

tation for the odd sites, the Bethe equations read, for 1 ≤ n ≤ M (l) with 1 ≤ l ≤ M+N−1:

M (1)∏

j=1

e2(u
(1)
n − u

(1)
j ) e2(u

(1)
n + u

(1)
j )

M (2)∏

j=1

e−1(u
(1)
n − u

(2)
j ) e−1(u

(1)
n + u

(2)
j ) =

= −
(
e−1(u

(1)
n − i) e−3(u

(1)
n + i)

)L
e1(u

(1)
n ) Q1

(
u(1)

n −
i

2

)
,

M (l)∏

j=1

e2(u
(l)
k − u

(l)
j ) e2(u

(l)
k + u

(l)
j )

∏

τ=±1

M (l+τ)∏

j=1

e−1(u
(l)
k − u

(l+τ)
j ) e−1(u

(l)
k + u

(l+τ)
j ) =

= −e1(u
(l)
n ) Ql

(
u(l)

n −
i l

2

)
, 1 < l < M ,

M (M+1)∏

j=1

e1(u
(M)
n − u

(M+1)
j )e1(u

(M)
n + u

(M+1)
j )

M (M−1)∏

j=1

e−1(u
(M)
n − u

(M−1)
j ) e−1(u

(M)
n +u

(M−1)
j )=

= QM

(
u(M)

n −
iM

2

)
,

M (l)∏

j=1

e−2(u
(l)
k − u

(l)
j ) e−2(u

(l)
k + u

(l)
j )

∏

τ=±1

M (l+τ)∏

j=1

e1(u
(l)
k − u

(l+τ)
j ) e1(u

(l)
k + u

(l+τ)
j ) =

= −e−1(u
(l)
n ) Ql

(
u(l)

n −
i

2
(2M− l)

)
, M < l < M + N − 1 ,
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M (l)∏

j=1

e−2(u
(l)
k − u

(l)
j ) e−2(u

(l)
k + u

(l−1)
j )

∏

τ=±1

M (l+τ)∏

j=1

e1(u
(l)
k − u

(l+τ)
j ) e1(u

(l)
k + u

(l+τ)
j ) =

= −
(
e−1(u

(l)
n − i ρ) e−1(u

(l)
n + i ρ)

)L
e1(u

(l)
n ) QM+N−1

(
u(l)

n − i

(
ρ −

1

2

))
,

l = M + N − 1 .

In the above equations, we set

Ql(u) =
Kl(u)K+

l (u)

Kl+1(u)K+
l+1(u)

,

according to the chosen boundary matrices.
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H. Poincaré 7 (2006) 1217 math.QA/0512037.

[9] J.A. Minahan and K. Zarembo, The Bethe-ansatz for N = 4 super Yang-Mills, JHEP 03

(2003) 013 [hep-th/0212208].

[10] N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B

670 (2003) 439 [hep-th/0307042];

N. Beisert, The SU(2|3) dynamic spin chain, Nucl. Phys. B 682 (2004) 487

[hep-th/0310252];

N. Beisert, V. Dippel and M. Staudacher, A novel long range spin chain and planar N = 4

super Yang-Mills, JHEP 07 (2004) 075 [hep-th/0405001].

– 38 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C70%2C193
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C70%2C193
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C61%2C977
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C61%2C977
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA21%2C2375
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA21%2C2375
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA25%2C5963
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA25%2C5963
http://arxiv.org/abs/hep-th/9209054
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C89%2C741
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C89%2C741
http://arxiv.org/abs/hep-th/9212007
http://arxiv.org/abs/math.QA/0210242
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0502%2CP007
http://arxiv.org/abs/math-ph/0411021
http://arxiv.org/abs/math.QA/0512037
http://jhep.sissa.it/stdsearch?paper=03%282003%29013
http://jhep.sissa.it/stdsearch?paper=03%282003%29013
http://arxiv.org/abs/hep-th/0212208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB670%2C439
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB670%2C439
http://arxiv.org/abs/hep-th/0307042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB682%2C487
http://arxiv.org/abs/hep-th/0310252
http://jhep.sissa.it/stdsearch?paper=07%282004%29075
http://arxiv.org/abs/hep-th/0405001


J
H
E
P
0
9
(
2
0
0
7
)
0
0
1

[11] P. Kulish, Integrable graded magnets, J. Sov. Math. 35 (1986) 2648.

[12] H. Saleur, The continuum limit of sl(N/K) integrable super spin chains, Nucl. Phys. B 578

(2000) 552 [solv-int/9905007].

[13] M.J. Martins, Integrable mixed vertex models from braid-monoid algebra, solv-int/9903006.

[14] Z. Tsuboi, Analytic Bethe ansatz and functional equations associated with any simple root

systems of the lie superalgebra sl(r + 1|s + 1), Physica A 252 (1998) 565.

[15] Z. Tsuboi, Analytic Bethe ansatz related to a one-parameter family of finite-dimensional

representations of the lie superalgebra sl(r + 1|s + 1), J. Phys. A 31 (1998) 5485.

[16] V. Kazakov, A. Sorin and A. Zabrodin, Supersymmetric Bethe ansatz and baxter equations

from discrete hirota dynamics, hep-th/0703147.
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